
 98

BULGARIAN ACADEMY OF SCIENCES 
 
 
CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 2 
 
Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2014-0023 
 
 
 
 
 
 
 
 
 
 
 
Secret Image Sharing Scheme Based on a Boolean Operation 

Amitava Nag*, Sushanta Biswas**, Debasree Sarkar**, Partha 
Pratim Sarka** 
* Academy of Technology West Bengal University of Technology Hooghly 721212 – India  
** Department of Engineering and Technological studies University of Kalyani Kalyani 741 235 – 
India 
E-mail: amitavanag.09@gmail.com 

Abstract: Traditionally extensive researches have been done on secret image 
sharing which support the fault tolerance property. But their reconstruction 
complexity is high. Some research papers on secret image sharing are also 
available with smaller reconstruction complexity, due to the use of a Boolean 
operation. But these research works lack the fault tolerance property which is the 
heart of secret sharing. This paper deals with a general (k, n) secret image sharing 
scheme for gray scale images with both low reconstruction complexity and 
preservation of the fault tolerance property. Moreover, the proposed sharing 
generation technique can also be applied on colour images.  

Keywords: Secret image sharing, Boolean operation, reconstruction complexity, 
fault tolerance property. 

1. Introduction 

Due to the widespread use of Internet, the sharing and transmission of secure 
information over insecure networks causes one of the most challenging security 
issues. Therefore, finding ways to transmit secretly data through Internet has 
become an important issue. Two methods, cryptography and steganography have 
been used to protect secure data from malicious users on Internet. Cryptography 
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transforms the secret data into a meaningless form, which can easily attract 
malicious users during transmission through Internet. The other method − 
steganography, is used to provide secure transmission by hiding the secret data into 
a cover medium to avoid observation. These two methods are of Single Point Of 
Failure (SPOF) type since they use a single storage mechanism. Therefore these two 
methods are not robust against loss or modification. 

The secret sharing schemes were proposed by B l a k l e y [1] and S h a m i r 
[2] independently in 1979. It is technique of protecting secret data, like images by 
dividing the secret data into n pieces (each piece is known as a shadow share) and 
distribute the shares among n participants. Each participant is allocated a share of 
the secret that looks meaningless. The original image can be recovered only when 
any k of them are combined together, but any k – 1 or fewer shares cannot have 
sufficient information to reconstruct the original one.  

In 1979 Shamir developed the idea of a (k, n) threshold-based secret sharing 
technique (k ≤ n). The technique allows a polynomial function of order k – 1 
constructed as follows  
(1)   f (x) = d0 + d1x + d2x2 +… + dk–1xk–1 (mod P),  
where the value d0 is the secret, P is a prime number and d1, d2, …, dk–1 are 
randomly determined from integers within [0, P – 1]. The secret shares are the pairs 
of values (xi , yi) where yi = f (xi), 1 ≤ i ≤ n and 0 < x1 < x2, …, <xn ≤ P – 1. 

The polynomial function f (x) is destroyed after each shareholder possesses a 
pair of values (xi, yi), so that no single shareholder knows the secret value d0. In 
fact, no groups of k – 1 or fewer secret shares can discover the secret d0. Note that 
for a larger degree (larger value of k) of the polynomial f (x), more shares are 
distinguished from the secret d0. 

On the other hand, when k or more secret shares are available, then we may set 
at least k linear equations yi = f(xi) for the unknown di’s. The unique solution to 
these equations shows that the secret value d0 can be easily obtained using Lagrange 
interpolation. In Shamir’s SSS, knowing even k – 1 linear equations does not 
expose any information about the secret. The recombination of shares to generate 
the secret k is done by using the following Lagrange interpolation formula 

(2)   ቐ
݀0 ൌ ∑ ݅ݕ

݇െ1
݅ൌ0 ,݅ߚ

݅ߚ ൌ ∏ െ݆ݔ
݆ݔെ݅ݔ

.݇െ1
݆ൌ0,്݆݅

 

The algorithmic complexity is Oቀ݇log2݇ቁ for polynomial evaluation and 
interpolation which indicates that Samir’s method has computational complexity of 
Oቀ݇log2݇ቁ.  

In 2002 T h i e n  and L i n [3] proposed a (k, n) threshold based secret image 
sharing scheme by cleverly applying Shamis’s polynomial approach. The essential 
idea is to use a polynomial function of order k – 1 to construct n image shares, in 
which the size of each share image is only 1/k times of the original image, but the 
computational complexity is the same as in Samir’s scheme. This work attracted 
many researchers to propose different techniques which are given in references 
[4-7]. But in [3] T h i e n  and  L i n  proposed a method in which the pixels having 
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a value greater that 251, are truncated into 250. Recently, in [8] Lin and Wang 
proposed a (k, n) secret sharing method. In [8] the reconstructed image is lossy in 
nature for k < n and lossless for k = n. The method proposed in [8] supports the fault 
tolerance property, but the computational complexity at the recovery phase is 
Oቀ݇log2݇ቁ, since they also adopted Thien and Lin secret sharing method.  Recently, 
W u [16] proposed a secret image sharing scheme for light images. This scheme 
improves the Thien-Lin scheme by replacing the prime number 251 by 257. These 
types of secret sharing schemes are known as traditional non-visual Secret Sharing 
(SS).  

Another type of a secret sharing scheme is Visual Secret Sharing (VSS) [9-15], 
which was first designed in 1995 by N o a r and S h a m i r [9], based on the (k, n)- 
threshold concept. In VSS scheme, out of n, any k or more shares can reconstruct 
the original image “visually” by superimposing the shares and it does not involve 
any complex computations. One of the major drawbacks of VSS is the pixel 
expansion and low image quality.  

W a n g  et al. [14] proposed in 2007 a lossless (n, n) secret sharing scheme for 
gray scale images based on a Boolean operation without pixel expansion and 
preserving the reconstruction accuracy. The authors first generate n – 1 random 
matrices R1, R2, ..., Rn–1 and then generate n (n ≥ 2) shadows from the secret gray-
scale image G as given below: 

(3)   

ە
ۖ
۔

ۖ
ۓ ଵܵ ൌ ܴଵ                       

 ܵଶ ൌ ܴଵ ْ  ܴଶ            
… … …

ܵିଵ ൌ ܴିଶ ْ ܴିଵ
ܵ ൌ ܴିଵ ْ           ܩ

. 

The original image is reconstructed with the help of all n shares S1, S2, …, Sn 
by the following computation: 
ܩ   (4) ൌ ଵܵ ْ  ܵଶ ْ  ܵଷ ْ … ْ ܵ … 

From the above reconstruction technique it can be observed that to reconstruct 
the original secret image, all n shares are required, any n – 1 or fewer cannot 
reconstruct a lossy or lossless version of the original secret image, i.e,. Wang’s 
technique does not support the fault tolerance property which is the main 
requirement of secret sharing.  

The aim of this paper is to improve the scheme proposed by W a n g  et al. [14] 
by developing a (k, n), 2 ≤  k ≤ n, secret image sharing scheme based on a Boolean 
operation with the same reconstruction complexity.  

In this paper we have proposed a (k, n), 2 ≤ k ≤ n, secret image sharing scheme 
based on a Boolean operation with no reconstruction complexity. 

2. The proposed scheme 

In this section a secret sharing (k, n) algorithm is proposed based on a Boolean 
operation. The work is divided into three phases: (i) initialization phase, (ii) share 
generation phase, and (iii) reconstruction phase.  
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2.1. Initialization phase 

In this section the original secret holder (also known as dealer) and the participant 
need some inter-communication. Each participant ܶ chooses ID as his/her own 
identity number and provides their own identity number to the dealer. For any pair 
of participants ܶ and ܶ, the dealer must ensure that ID ് ID. 

2.2. Share generation phase 

In the proposed (k, n), 2 ≤ k ≤ n, secret image sharing scheme, n noise-like shares 
are generated from a secret image G of the same size h×w by three steps.  

Step 1. n–1 distinct matrices {R1, R2, …, Rn–1} of size h×w are generated, such 
that  

(5)   ቐ
ܵ ൌ ܩ  2,                                   

∑ ܴ ൌ ܵ,ିଵ
ୀଵ                                     

ܴ ് ܴ  for 1  ݅ ് ݆  ݊ െ 1,      
 

where  ܴ ൌ ሼܴሾܽ, ܾሿ |ܴሾܽ, ܾሿ א ሾ0, 255ሿ, 1  ܽ  ݄, 1  ܾ   .ሽݓ
Step 2. Generate a random matrix Rn, where  

ܴ ൌ ሼܴሾܽ, ܾሿ |ܴሾܽ, ܾሿ א ሾ0, 255ሿ, 1  ܽ  ݄, 1  ܾ   .ሽݓ
Step 3. Generate n share images Si  

(6)   ܵ ൌ  ൜ܴ  ْ ܴ           if  1  i  n െ 1,
ܴ.                                                         

The symbol ْ represents a bitwise X-OR. 
The correlation among the elements of the individual matrix Ri generated at 

Step 1 is not lost though the elements are generated randomly from the original 
secret images, as these elements are generated from the correlated elements of the 
generated matrix. But this correlation is totally broken after the Boolean operation  
(X-OR) with the elements of totally randomly chosen elements of matrix ܴ. Thus 
the elements of ܵ in Step 3 generated by (6) are totally uncorrelated and noise-like, 
which is desired for secret sharing. The complete share generation scheme is shown 
in Fig. 1. 

Definition [20]. A cryptosystem has perfect secrecy if H(A/B)=A(A), where 
H(A/B) represents conditional entropy, which is the amount of uncertainty in A, 
given B. 

Theorem 1. Each share image Si gives no information about the original secret 
image. 

P r o o f :  Consider the X OR operation ܤ ൌ ܣ ْ ܴ, where A, B, R ∈ {0, 1}n. 
Now, if we X OR  A on both sides of ܤ ൌ ܣ ْ ܴ  as  

ܣ ْ ܤ ൌ ܣ ْ ܣ ْ ܴ ൌ ܴ . 
This has for each A and B, R a unique value because ܴ ൌ ܣ ْ B. Since there is 

a total number of 2n possible sequences of R ∈ {0, 1}n, the probability of R is 1/2n 
which is the same as B.  

Since R and B have the same probability  1/2n, we have  
ሺܴሻܪ ൌ ሻܤሺܪ ൌ െ logଶሺ1/2ሻ ൌ ݊, 

where H(R) And H(B) are the entropy of R and B respectively. 
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Fig. 1. Share generation 

 
H(A, R, B) can be calculated in two different ways.  
Case 1. Knowing that (A, R, B) is the same as (A, R) and since A and R are 

independent, H(A, R, B) can be represented as 
,ܣሺܪ ܴ, ሻܤ  ൌ ,ܣሺܪ  ܴሻ  ൌ ሻܣሺܪ     .ሺܴሻܪ 

Again, knowing that (A, R, B) is the same as (A, B) and since ܴ ൌ ܣ ْ B  , 
i.e., A and B determine R for XOR operation and hence we have  

,ܣሺܪ ܴ, ሻܤ  ൌ ,ܣሺܪ  ሻܤ  ൌ ሻܤ/ܣሺܪ     .ሻܤሺܪ 
Therefore from case 1 and case 2H(A/B) = H(A), since H(R)=H(B). 
This proves that X-OR operation ܤ ൌ ܣ ْ ܴ has perfect secrecy (from 

Definition 1), i.e., ܤ ൌ ܣ ْ ܴ is completely unbreakable and encrypted.  
Now in our proposed share generation scheme, as Sn is a random matrix, the 

obtained share images ܵ ൌ ܴ  ْ ܴ  (generated in Step 3) are completely 
encrypted, unbreakable and distinct. This proves that each share image Si gives no 
information about the original secret image. 

The following example illustrates the proposed share generation scheme in 
details. Let G be the original image:   

G =൦

124 138 153 116
117 121 151 127
106 95 118 153
95 87 149 127

൪. 

We can find out Ri, i=1, 2, 3, using equation (5) as:  

ܴଵ ൌ ൦

93 59 152 106
53 28 88 92
14 77 32 147
50 19 79 114

൪, 
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ܴଶ ൌ ൦

30 58 2 2
44 75 75 2
11 2 61 5
2 16 59 2

൪, 

ܴଷ ൌ ൦

17 37 15 25
36 34 4 49
97 32 41 17
59 68 27 27

൪, 

where   ܴଵ  ܴଶ  ܴଷ ൌ ܩ  16. Next, we generate another random matrix ܴସ, 
0  ܴସ  255, 

ܴସ ൌ ൦

82 130 110 158
224 27 251 253
249 214 45 146
236 35 106 154

൪. 

Now four different shares can be generated by equation (6) as follows: 

ଵܵ ൌ ܴଵ⊕ܴସ ൌ ൦

15 185 246 244
213 7 163 161
247 155 13 1
222 48 37 232

൪, 

ܵଶ ൌ ܴଶ⊕ܴସ ൌ ൦

76 184 108 156
204 80 176 255
242 212 16 151
238 51 81 152

൪, 

ܵଷ ൌ ܴଷ⊕ܴସ ൌ ൦

67 167 97 134
196 57 255 204
152 246 4 131
215 103 113 129

൪, 

         ܵସ ൌ ܴସ ൌ ൦

80 130 110 158
224 27 251 253
249 214 45 146
236 35 106 154

൪. 

In this phase when the share images are generated, the dealer assigns a name to the 
share images S1, S2, ..., Sn as IDଵ,  IDଶ … ID respectively. Then each participant ܶ 
(whose identity number is ID) chooses his/her own share image ܵ (whose name is 
ID. This naming convention will help to apply an appropriate reconstruction 
algorithm discussed in Section 2.3). 

2.3. Reconstruction scheme 

Our reconstruction phase involves two different cases. In the first case, if any one or 
more number of shares and the last shares are available, the secret can be easily 
reconstructed. In the second case if any two or more shares, excluding the last one 
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are available, then the secret image can be recovered, which is never possible by 
Wang’s method.  

Let ܶ ൌ ሼ ଵܶ, ଶܶ, … , ܶሽ . The members of T will cooperate to recover the 
original secret. 

2.3.1. Reconstruction technique 1 

While any one or more members of 
ܶ ൌ ሼ ଵܶ,  ଶܶ, … , ܶିଵሽ 

and the participant ܶ gather their shares, then the original secret is reconstructed, 
using similar calculation of the share construction scheme in two steps. 

Step 1. Any k–1 shares and the last share Sn (total k shares) collected together 
are first X OR and k – 1 number of random matrices is produced {R1, R2, …, Rk–1} 
as follows: 
(7)   ܴ ൌ  ܵ⊕ܵ  ݂1  ݎ  ݅  ݇ െ 1 … 

Step 2. Number k − 1 of matrices {R1, R2, …, Rk–1} are then added and they 
reconstruct the secret image as follows: 

ܩ   (8) ൌ ቊ
൫∑ ܴ

ିଵ
ୀଵ ൯mod 256          for ݇ ൏ ݊,

∑ ܴ
ିଵ
ୀଵ െ  2                 for ݇ ൌ ݊.

   

For reconstruction of the original image, any k – 1 shares ܵ , 1  ݅  ݇ െ 1  
and the last share ܵ of uncorrelated elements are used. Each share ܵ after a 
Boolean operation (X-OR) with the share ܵ produces ܴ  which are again 
correlated to some extent. Now if one or more than one of these ܴ  is available, the 
original secret image will be recovered. When all ܴ  1  ݅  ݊ will be available, 
the secret image will be recovered without any loss. Here lies the novelty of the 
work.   

To demonstrate the revealing process using the first reconstruction scheme, we 
choose k = n = 4 and the original image G is reconstructed without any loss as  

ܩ ൌ ଵܵ⊕ܵସ  ܵଶ⊕ܵସ  ܵଷ⊕ܵସ= ൦

124 138 153 116
117 121 151 127
106 95 118 153
95 87 149 127

൪. 

2.3.2. Reconstruction technique 2 

The main problem of the above reconstruction algorithm is that if the last share ܵ 
(share of the participant ܶ) is lost or damaged or not available, the reconstruction is 
not possible. Thus we have proposed another reconstruction method, in which if 
any two or more numbers of shares are available, the reconstruction is possible by 
simple XOR and add operations. However, if a fewer number of shares are 
available. the quality of reconstruction is to be sacrificed to some extent, though the 
secret image is recognizable preserving the fault tolerance property. Thus the 
limitation of the availability of the last share for reconstruction is completely 
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avoided. An important point may be noted here that if any two or more (multiple of 
two) shares (Si, where I ≠ n) except the last one are available, then  

(9)   R = SiْSj = RiْSnْRjْSn = RiْRj …  

The matrix R here is not dependent on Sn as above shown. R is dependent on Ri 
and Rj. The elements of Ri and the elements of Rj are self correlated. Thus the 
elements of RiْRj or R are also correlated. The share reconstruction process from 
any k shares without the last share is described as follows: 

Step 1. Calculate Gij  and G as  

ܩ   (10) ൌ ∑ ∑ ൫ ܵ ْ ܵ൯
ୀାଵ

ିଵ
ୀଵ mod 256, 

where ൫ ܵ ْ ܵ൯ ൌ   .  is independent of the last share Snܩ

To demonstrate the revealing process using the second reconstruction scheme, 
first k = 2 has been chosen and the secret image Gij is reconstructed as:  

ଵଶܩ ൌ ଵܵ⊕ܵଶ ൌ ൦

67 1 154 104
25 87 19 94
5 79 29 150

48 3 116 112

൪, 

ଶଷܩ ൌ ܵଶ⊕ܵଷ ൌ ൦

76 30 151 114
17 62 92 109

111 109 9 130
9 87 84 105

൪, 

ଵଷܩ ൌ ଵܵ⊕ܵଷ ൌ ൦

15 31 13 26
8 105 79 51

106 34 20 20
57 84 32 25

൪, 

ܩ ൌ ଵଶܩ  ଶଷܩ  ଵଷܩ ൌ ଵܵ⊕ܵଶ  ܵଶ⊕ܵଷ  ଵܵ⊕ܵଷ ൌ 

ൌ ൦

158 62 255 244
50 254 190 254

222 222 58 255
114 174 232 242

൪. 

This reconstruction scheme is applied when any k members of 
ܶ ൌ ሼ ଵܶ, ଶܶ, … , ܶିଵሽ  except the participant ܶ provide their share images. 

We can extend our proposed scheme to colour images. A colour image can be 
broken into three gray scale images corresponding to the Red, the Green and the 
Blue planes and generate shadows from each plane individually, using the proposed 
share generation scheme for gray scale image. Then final shadows for the colour 
images are generated by composing the corresponding shadows from the Red, 
Green and Blue planes. Fig. 2 shows how to generate n share images from one 
colour image. 
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Fig. 2. Share generation scheme of a colour image 

3. Experimental results 

This section presents the experimental results of the proposed (k, n) secret image 
sharing scheme. A (2, 4) secret sharing experiment is selected to demonstrate the 
performance of the proposed method. A test image “Lenna” of size 512×512 is used 
as a secret (input) image as shown in Fig. 3(a). Fig. 3(b)-(e) shows the generated 
noise like a shadow image using the proposed method. 
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(a)                    (b) 

 

  
(c)         (d) 

 
(e) 

Fig. 3. A (2, 4) secret image sharing example of the proposed method: (a) secret image; (b) – (e) 
generated share images 

Fig. 4 shows the reconstructed secret images discussed in Subsection 2.2.1, 
where Fig. 4(a), (b) and (c) are the reconstructed images from any one and the last 
one (Sn), the reconstructed image from any two and the last one (Sn)  and the 
reconstructed image from all four shares. 
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(a)  PSNR=25.71                      (b) PSNR=31.48   

 
(c) PSNR=∞ 

Fig. 4. Images reconstructed in the proposed (2, 4) sharing method with any (k–1) and last share 
 

The images that are reconstructed using the technique discussed in Subsection 
2.2 have been shown in Fig. 5. In Fig. 5, (a) and (b) show the reconstructed images 
from any two share images and from any three share images respectively, using the 
proposed (2, 4) sharing method. 
 

      
(a) PSNR=25.68                                       (b) PSNR=32.19      

Fig. 5.  Images reconstructed from any 2 or more shares except the last one 
 

To demonstrate the performance of the proposed (2, 4) secret sharing method 
on colour images the image of Barbara of size 640×512 is used as a secret (input) 
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image, shown in Fig. 6(a). Fig. 6(b) to (e) show the generated noise like a shadow 
image using the proposed method for colour images. 

 
(a) 

   
(b)                                  (c) 

   
(d)                                  (e) 

Fig. 6. A (2, 4) secret image sharing example of the proposed method for colour images: (a) secret 
image; (b)-(e) generated share images 

Fig. 7(a), (b) and (c) are the reconstructed images from any one and the last 
one (Sn), the reconstructed image from any two and the last one (Sn) and the 
reconstructed image from all four shares. 

     
(a) PSNR=25.88                     (b) PSNR=33.01                           (c) PSNR=∞ 

Fig. 7. Images reconstructed in the proposed (2, 4) sharing method with any k–1 and the last share 
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In Fig. 8, (a) and (b) show the reconstructed images from any two share 
images and from any three share images respectively, using the proposed (2, 4) 
sharing method. 

       
(a) PSNR=24.91                                       (b) PSNR=31.02                  

 
Fig. 8. Images reconstructed from any 2 or more shares except the last one 

3.1. Accuracy  

The Peak Signal to Noise Ratio (PSNR) is applied to measure the quality of the 
reconstructed image. The higher PSNR indicates a better quality and lower PSNR 
denotes worse quality. The definition of PSNR is given in (11), (12). The typical 
values for PSNR in a lossy image are within the range from 20 to 40 dB [17]:  
(11)   PSNRሺdBሻ ൌ 20 logଵ

ଶହହ
√MSE

, 
where MSE is the mean squared error between the original image and the modified 
image which is defined as  
(12)   MSE ൌ  ଵ

ெൈே
∑ ∑ ൫ܫሺݔ, ሻݕ െ ,ݔᇱሺܫ ሻ൯ଶேݕ

௬ୀଵ
ெ
௫ୀଵ .   

Table 1. Comparison of PSNR of the reconstructed images of C h a n g  et al. 
[17] and the proposed scheme 

Scheme Gray-scale image (Lena) Colour image (Barbara) 
max min max min 

Proposed scheme ∞ 25.68 ∞ 24. 91 
C h a n g  et al.  [17] 33.70 33.75 

The PSNR of the reconstructed gray-scale and of the reconstructed colour 
image is 33.70 and 33.75 respectively. On the other hand, the lowest and height 
PSNR of the proposed scheme are 24.91 and ∞ respectively. Table 1 shows the 
PSNR values of the proposed scheme and the scheme of C h a n g  et al. [17]. 

3.2. Analysis of a differential attack 

The Number of the Changing Pixel Rates (NPCR) and the Unified Average 
Changed Intensity (UACI) are designed to measure the resistance ability of the 
encrypted image against a differential attack. These two quantities are 
mathematically defined in following equations: 

,ሺ݅ܦ   (13) ݆ሻ ൌ ൜0  if  ܥଵሺ݅, ݆ሻ ൌ ,ଶሺ݅ܥ ݆ሻ,
1   if ܥଵሺ݅, ݆ሻ ് ,ଶሺ݅ܥ ݆ሻ,
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(14)   NPCR ൌ
∑ ሺ,ሻ,ೕ

ெൈே
ൈ 100 %, 

(15)   UACI ൌ  ଵ
ெൈே

∑ หభሺ,ሻିమሺ,ሻห
ଶହହ, ൈ 100 %, 

where C1(i, j) and C2(i, j) are the gray-scale value of the original image and the 
encrypted image, respectively. The theoretical NPCR and UACI values of the 
image are 99.6094% and 33.4635%, respectively [19]. The 99.6094% value of 
NPCR represents that the position of each pixel is dramatically randomized and the 
33.4635% value of UACI values indicates that the intensity levels of almost all 
pixels in the shared encrypted image are changed [17]. Table 2 shows that the 
average values of NPCR (> 99%) and UACI (≈ 33%) of the proposed method are 
very close to the theoretical values, which indicates that a tiny change in the 
original secret image will create a significant change in the encrypted (share) image. 
Therfore, the encrypted shared images generated by our proposed scheme are robust 
against a differential attack. 

Table 2. Values of NPCR and UACI tests of encrypted images of a gray image 
Test Proposed (average) [17] [18] 

NPCR (%) 99.67 56.2 99.60 
UACI (%) 32.23 56.2 28.13 

 
Table 3. Values of NPCR and UACI tests of encrypted images of a colour image 

Test Proposed (average) [17] R G B 
NPCR (%) 99.48 99.65 99.56 70.1 
UACI (%) 26.85 26.01 24.05 32.8 

Table 3 shows the average values of NPCR (> 99%) and UACI (≈ 33%) for 
each component of the colour images which are also close to the theoretical value. 
Hence, the proposed scheme for colour images is also robust against a differential 
attack. 

3.3. Complexity analysis 
In [2] the computational complexity for the polynomial evaluation and interpolation 
is O(klog2k). Since Thien, and Lin have adopted Shamir’s (k, n) scheme, their 
computational complexity for the recovery phase is the same as that of Shamir’s 
scheme, i.e. O(klog2k). Lin and Wang’s scheme in [10] is also based on the scheme 
proposed by Thien, and Lin, which raises the computational complexity to 
O(klog2k) for the recovery phase.  

The reconstruction process presented in this paper computes n images using  
X-OR and algebraic addition operations, resulting in computational time 
proportional to n. The image construction is proportional to k – 1 because it 
includes X-OR of all n shares and addition of k – 1 shares. Therefore, the 
computational complexity is also dependent on the image size. So, computational 
complexity of O(k), k ≤ n is established in this paper. 

Our method employs only arithmetic and Boolean operations rather than any 
geometric calculation, that is why it leads to low computational complexity. The 
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methods related are compared with the proposed scheme in Table 4. The second 
row of Table 3 shows the comparison in terms of computational complexity of the 
proposed method and the related works.  

Table 4. Comparison between the related image sharing and the proposed scheme 

Image scheme W a n g  
et al. [14] 

C h a n g  
et al. [17] L i n  et al.[8] Our Proposed Method 

(k, n) secret 
sharing No No Yes Yes 

Reconstruction 
complexity O(n) O(n) O(klog2k) O(k) 

Lossless secret 
construction Lossless Lossy 

Lossy for k<n 
and Lossless for 

k=n 

Lossy for k<n and 
Lossless for k=n 

Fault tolerance 
property No No Yes Yes 

From Table 4 it is obvious that the reconstruction complexity of the method 
described in this paper is considerably lower than the one of the method described 
in [8]. Besides, the fault tolerance property of the method developed by us is better 
than that of the method in [14, 17]. Thus, considering both these properties, this 
research work is superior in the aspect that it includes both the properties which 
have not been included simultaneously in a single work. 

4. Conclusion 

A typical (k, n) secret sharing scheme provides a high fault-tolerant property due to 
its distributed storage mechanism. In this paper we propose a new (k, n) secret 
sharing scheme, based on a Boolean operation. In the proposed scheme even if  
n – k shares are lost or corrupted, the remaining k shares are sufficient to recover the 
secret. Moreover, the reconstruction complexity of the method proposed is O(n) due 
to its Boolean operation. These are the main advantages of our proposed scheme 
compared to the existing methods. Moreover, our secret sharing can also be applied 
on colour images and it produces excellent results. 

R e f e r e n c e s 

1. B l a k e l y, G. R. Safeguarding Cryptography Keys. – In: Proc. of AFIPS National Computer 
Conference, Vol. 48, 1979, 313-317.  

2. S h a m i r, A. How to Share a Secret. – Communications of the ACM, Vol. 22, 1979, No 11, 612-
613. 

3. T h i e n, C. C., J. C. L i n. Secret Image Sharing. – Computer Graphics, Vol. 26, 2002, No 5, 765-
770. 

4.  T h i e n, C. C., J. C. L i n. An Image-Sharing Method with User-Friendly Shadow Images. – IEEE 
Transactions on Circuit System, Vol. 13, 2003, No 12, 1161-1169. 

5. C h a n g, C. C., I. C. L i n. A New (t, n) Threshold Image Hiding Scheme for Sharing a Secret 
Color Image. – In: Proc. of ICCT’2003, Vol. 1, 2003, 196-202. 

6. W a n g, R. Z., C. H. S u. Secret Image Sharing with Smaller Shadow Images. – Pattern 
Recognition Letter, Vol. 27, 2006, No 6, 551-555.  

 



 113

7. W a n g, R. Z., S. J. S h y u. Scalable Secret Image Sharing. – Signal Processing: Image 
Communication, Vol. 22, 2007, No 4, 263-373. 

8. L i n, Y. Y., R. Z. W a n g. Scalable Secret Image Sharing with Smaller Shadow Images. – IEEE 
Signal Processing Letters, Vol. 17, March 2010, No 3, 316-319.  

9. N a o r, M., A. S h a m i r. Visual Cryptography. – In: Proc. of the Advances in Cryptology-
Eurocrypt’94. Lecture Notes in Computer Science, Vol. 950, 1995, 1-12.  

10. B l u n d o, C., A. D. S a n t i s, D. R. S t i n s o n. On the Contrast in Visual Cryptography 
Schemes. – Journal of Cryptology, Vol. 12, 1999, No 4, 261-289. 

11. Y a n g, C. N. New Visual Secret Sharing Schemes Using Probabilistic Method. – Pattern 
Recognition Letters, Vol. 25, 2004, No 4, 481-494. 

12. Y a n g, C. N., T. S. C h e n. Aspect Ratio Invariant Visual Secret Sharing Schemes with Minimum 
Pixel Expansion. – Pattern Recognition Letters, Vol. 26, 2005, No 2, 193-206. 

13. S h y u, S. J., S. Y. H u a n g, Y. K. L e e, R. Z. W a n g. Sharing Multiple Secrets in Visual 
Cryptography. – Pattern Recognition, Vol. 40, 2007, No 12, 3633-3651. 

14. W a n g, D., L. Z h a n g, N. M a, X. L i. Two Secret Sharing Schemes Based on Boolean 
Operations. – Pattern Recognition, Vol. 40, 2007, No 10, 2776-2785. 

15. C h e n, T.-H., C.-S. W u. Efficient Multi-Secret Image Sharing Based on Boolean Operations. – 
Journal of Signal Processing, Vol. 91, 2011, 90-97. 

16. W u. A Secret Image Sharing Scheme for Light Images. – EURASIP Journal on Advances in 
Signal Processing, 2013. 

17. C h a n g, C-C., C h i a-C h e n L i n c, T. H o a n g N g a n L e d, H o a i B a c L e. Sharing a 
Verifiable Secret Image Using Two Shadows. – Pattern Recognition, Vol. 42, November 
2009, Issue 11, 3097-3114. 

18. L i u, H., X. W a n g, A. K a d i r. Image Encryption Using DNA Complementary Rule and Chaotic 
Maps. – Applied Soft Computing, Vol. 12, 2012, 1457-1466.  

19. Z h u, C. A Novel Image Encryption Scheme Based on Improved Hyper-Chaotic Sequences. – 
Optics Communications, Vol. 285, 2012, No 1, 29-37. 

20.  W a d e, T., C. L. W a s h i n g t o n. Introduction to Cryptography with Coding Theory. Pearson, 
August 2005. 


